AIRPLANE FLIGHT MANUAL CAPRONI VIZZOLA C22J

Serial NO __________ Registration NO _______ Type Certificate NO ________

THIS HANDBOOK INCLUDES THE MATERIAL, REQUIRED TO BE FURNISHED TO THE PILOT BY REGRISTRO AERONAUTICO ITALIANO REGULATIONS AND ADDITIONAL INFORMATION PROVIDED BY THE MANUFACTURER.

Manufacturer Name: CAPRONI VIZZOLA

Address: <u>https://www.mariosplanes.com/</u>

TABLE OF CONTENTS

SECTION 1 General	1-1
SECTION 2 Limitations	2-1
SECTION 3 Emergency Procedures	3-1
SECTION 4 Normal Procedures	4-1
SECTION 5 Performance	5-1
SECTION 6 Weight and Balance	6-1
SECTION 7 Panel & Systems Manual	7-1

SECTION 1 GENERAL

1.1.	Notes to Users	.1-2
1.2.	Dimensions And Areas	.1-2
1.3.	Engines	.1-3
1.4.	Fuel	.1-4
1.5.	Oil	.1-5
1.6.	Weights	.1-5
1.7.	Specific Loading	.1-5
1.8.	Baggage compartment	.1-5
1.9.	Definitions and Abbreviations	.1-6

1.1. NOTES TO USERS

General

It is the pilot's responsibility to be familiar, at all times, with the content matter of this Flight Manual, Information is contained in seven sections, viz:

Section 1	General
Section 2	Limitations
Section 3	Emergency Procedures
Section 4	Normal Operating Procedures
Section 5	Performance
Section 6	Weight and Balance
Section 7	Systems Manual

Information in this flight manual relates to an aeroplane typically equipped with acrobatic certification standards.

Each section contains a detailed list of contents. Whenever the certification of airworthiness is required to be carried, this flight manual must also be aboard the aeroplane as it is an essential part of the above-mentioned certificate.

Applicability

Application of this flight manual is limited to the specific Caproni Vizzola C22J Flight Simulator model designated by serial number on the face of the title page.

This manual is not to be used for real world operations.

Page Identification

The page numbers in each section include se section number and a dash (i.e. "3" for all pages in the "Emergency Procedures" section) followed by serial number of the page beginning with "1" for each section, such as 3-1. 3-3, etc.

Each page bears a page number at the bottom.

1.2. DIMENSIONS AND AREAS

A three-view illustration showing the pertinent details of the aeroplane appears in Fig.1 and 2.

1.3. ENGINES

- (a) Number of Engines
- (b) Engine Manufacturers
- (c) Engine Model Number
- (d) Take-Off Thrust
- (e) Engine RPM at Take-Off
- (f) Maximum Continuous Thrust
- (g) Engine RPM
- (h) Engine type

Compressor stages and Type Turbine stages and Type Combustion chamber Type 2 Microturbo TRS 18-1-202 145 daN 48750 130 daN 47000

1-centrifugal 1-axial annular reverse flow

Figure 1-1

Figure 1-2 Turning Radius

1.4. FUEL

a) Fuel Capacity (total)

(US Gal / lit)

- b) Usable Fuel (total) (US Gal / lit)
- c) Fuel Specification

113.6 / 430

110.6 / 418.5

FUEL TYPE	NATO	SPECIFICATIONS		COMMERICAL
	CODE	FRANCE	U.K.	DENOMINATION
Kerosene + 50°C	F 34	AIR 3405/	D. Eng.	Fuel TRO Kerosene JP 5
(+ S 7.48)		C/F-34	RD 2453	AVTUR/ FS II
				(with antifreeze additive)
				MIL T 83133
Kerosene + 50°C	F 35	AIR 3405/	D. Eng.	Fuel TRO Kerosene JP 5
(without inhibitor)		C/F-35	RD 2494	AVTUR
				ASTM-D-1655
				JET A1 or JET A
				(without antifreeze additive)

For operations into forecast temperature below +5 °C the use of fuel anti-icing additive Phillips PFS-55MB is required. The additive concentration by volume shall be a minimum of 0.08 and maximum of 0.15 percent.

1.5.	OIL	-		
	a)	Oil Capacity (each engine)		
		(US Gal / lit)	0.211/0.8	
	b)	Usable Oil		
		(US Gal / lit)	0.132 / 0.5	
	c)	Oil Specification	MIL-L-23699)
			or MIL-L-7808	
1.6.	WE	EIGHTS		
			Lb	Kg
	a)	Maximum Take-Off Weight	2764	1255
	b)	Maximum Landing Weight	2582	1172
	c)	Maximum Zero-Fuel Weight	2037	925
		Maximum Weight in the		
		baggage compartment	24	11
	d)	Standard Empty Weight	1628	739
1.7.	SPE	ECIFIC LOADING		
	2)	Wing loading		
	a)	(lb/saft - Ka/samt)	22 / 161	
	h)	Thrust Loading	55/101	
	b)	$(Max Thrust / T \cap W)$	0 235	
			0.200	

1.8. BAGGAGE COMPARTMENT

		Lb	Kg
a)	Maximum Load Allowed	24	11

1.9. DEFINITIONS AND ABBREVIATIONS

- (a) General Airspeed terminology and symbols
 - CAS Calibrated Airspeed means the indicated speed of an aircraft, corrected for position and instrument error. Calibrated airspeed is equal to true airspeed in standard atmosphere at sea level.
 - KCAS Calibrated Airspeed expressed in "knots".
 - GS Ground speed is the speed of an airplane relative to the ground.
 - IAS Indicated airspeed is the speed of an aircraft as shown in the airspeed indicator when corrected for instrument error. IAS values published in this manual assume zero instrument error.
 - KIAS Indicated Airspeed expressed in "Knots".
 - M Mach number is the ratio of true airspeed to the speed of sound.
 - TAS True Airspeed is the speed of an airplane relative to undisturbed air which is the CAS corrected for altitude, temperature and compressibility.
 - KTAS True Airspeed expressed in "Knots".
 - V_A Maneuvering Speed is the maximum speed at which application of full available aerodynamic control will not overstress the airplane.
 - V_{FE} Maximum Flap Extended Speed is the highest speed permissible with wing flaps in a prescribed extended position.
 - V_{LO} Maximum Landing Gear Operating Speed is the maximum speed at which the landing gear can be safely extended or retracted.
 - V_{LE} Maximum Landing Gear Extended Speed is the maximum speed at which the aircraft can be safely flown with the landing gear extended.
 - V_{BE} Maximum Airbrakes Extended Speed is the maximum speed permissible with airbrakes in extended position.
 - V_{BO} Maximum Airbrakes Operating Speed is the maximum speed at which the airbrakes can be safely operated.
 - V_{MC} Air Minimum Control Speed is the minimum flight speed at which the airplane is directionally and laterally controllable, determined in accordance with Certification Regulations. Airplane Certification conditions include one engine becoming inoperative, not more than a 5° bank towards the operative engine, takeoff power on operative engine, landing gear up, flaps in takeoff position and most critical C.G. <u>NOTE:</u> for this airplane it is not an operating limitation.

- V_{MO}/M_{MO} Maximum Operating Limit Speed is the speed limit that may not be deliberately exceeded in normal flight operations. V is expressed in Knots and M in Mach number.
 - Vs Stalling Speed or the minimum steady flight speed at which the airplane is controllable.
 - V_{SI} Stalling Speed or the minimum steady flight speed obtained in a specific configuration.
 - V₅₀ Stalling Speed or the minimum steady flight speed at which the airplane is controllable in the landing configuration.
 - V_x Best Angle-of-Climb speed is the airspeed which delivers the greatest gain of altitude in the shortest possible horizontal distance.
 - V_Y Best Rate-of-Climb Speed is the airspeed which delivers the greatest gain in altitude in the shortest possible time.
- (b) Meteorological terminology

ISA	International Standard Atmosphere in which: The air is a perfect dry gas; The temperature at sea level is 15°C (59°F); The pressure at sea level is 29.92 In Hg (1013.2 mb); The temperature gradient from sea level to the altiutude at which temperature is -56.5°C (-69.7°F) is -0.00198°C (-0.003564°F) per foot and zero above that altitude.
OAT	Outside Air Temperature is the free air static temperature obtained either from inflight temperature indications or ground meteorological sources, corrected for instrument error and compressibility effects.
INDICATED PRESSURE ALTITUDE	The number actually read from an altimeter when the barometric subscale has been set to 29.92 In Hg (1013.2 mb).
PRESSURE	Altitude measured from standard sea level pressure (29.92 In Hg) by a pressure or barometric altimeter. It is the indicated pressure altitude corrected for position and instrument error. In this manual altimeter instrument errors are assumed to be zero.
STATION PRESSURE	Actual atmospheric pressure at field elevation.
WIND	The Wind Velocities recorded as variables on the chart of this manual are to be understood as the headwind or tailwind components of the reported wind.
HEIGHT	The vertical distance between the lower part of the aeroplane and the relevant datum.

(c) Thrust Terminology

TAKEOFF THRUST Maximum thrust possible during takeoff.

MAXIMUN CONTINUO THRUST	M Maximum thrust permissible for unrestricted periods of use. US
(d) Engine Co	ontrols and Instruments
EGT GAUG	E Exhaust Gas Temperature Gauge indicates temperature of the gases at the outlet of the gas producer turbine rotor.
(e) Airplane	Performance and Flight Planning Terminology
CLIMB GRADIENT	The ratio, in the same units, and expressed as percentage of:
	Change in height
	Horizontal distance travelled in the same time interval
DEMONSTRA CROSSWIN VELOCITY	 TED The demonstrated crosswind velocity is the crosswind component for which adequate control of the airplane during takeoff and landing was actually demonstrated during certification tests. Is not considered a limitation.
(f) Weight a	nd Balance
REFERENC DATUM	E An imaginary vertical plane from which all horizontal distances are measured for balance purposes.
ARM	The horizontal distance from the reference datum to the center of gravity (C.G.) of the item.
MOMENT	the product of the weight of an item multiplied by its arm. (Moment divided by a constant is used to simplify balance calculations by reducing the number of digits).
CENTER O GRAVITY (C.	 F The pint at which the airplane would balance if suspended. Its G.) distance from the reference datum is found by dividing the total moment by the total weight of the airplane.
C.G. ARM	The arm obtained by adding the airplane's individual moments and dividing the sum by the total weight.
C.G. LIMIT	The extreme center of gravity locations within which the airplane must be operated at a given weight.
USABLE FU	EL Fuel available for flight planning.

UNUSABLE FUEL	Fuel remaining after a runout test has been completed in accordance with certification regulations.		
STANDARD EMPTY WEIGHT	Weight of a standard airplane including unusable fuel, as defined by the Equipment List.		
BASIC EMPTY WEIGHT	Standard Empty Weight plus optional equipment actually installed.		
PAYLOAD	Weight of occupants, Cargo and baggage.		
USEFUL LOAD	Difference between takeoff weight and basic empty weight. It includes payload and usable fuel.		
MAXIMUM TAKEOFF WEIGHT	Maximum weight approved.		
MAXIMUM LANDING WEIGHT	Maximum weight approved for the landing touchdown.		
MAXIMUM ZERO FUEL WEIGHT	Maximum weight with no usable fuel.		

SECTION 2 LIMITATIONS

2.1.	General2-2
2.2.	Airspeed Limitations2-2
2.3.	Airspeed Indicator Markings2-4
2.4.	Power Plant Limitations2-4
2.5.	POwerplant Instrument Markings2-6
2.6.	Weight Limits2-6
2.7.	Center of gravity limits2-7
2.8.	Maneuvers Limits2-8
2.9.	Flight Maneuvering Load Factor Limits2-8
2.10.	Flight Crew2-8
2.11.	Kinds Of Operation2-8
2.12.	Fuel Limitation2-8
2.13.	Maximum Operating altitude Limit2-9
2.14.	Seating Limitation2-9
2.15.	Placards2-9

2.1. GENERAL

Section 2 of this manual presents the operating limitations, the significance of such limitations, instrument marking, colour coding and basic placards necessary for the safe operation or the airplane, its powerplant, standard systems and standard equipment.

NOTE:

The limitations included in this section are approved by the Registro Aeronautico Italiano.

2.2. AIRSPEED LIMITATIONS

Airspeed limitations and their operational significance are shown in Figure 2.1.

Variation of airspeed limit with height is shown in Figure 2.2.

SPEED	CAS	IAS	REMARKS
Maneuvering Speed	220	221	Do not make full or abrupt control
V _A (Knots)	220	251	movements above this speed.
Maximum Flap			Do not average this speed with a
Extended Speed	150	152	given flap setting
V _{FE} (Knots)			given hap setting.
Maximum Landing			
Gear Operating	140	142	Do not extend or retract landing gear
Speed	140	142	above this speed.
V _{LO} (Knots)			
Maximum Landing			
Gear Extended	140	1/12	Do not exceed this speed with
Speed	140	142	landing gear extended.
V _{LE} (Knots)			
Maximum Airbrakes			Do not avceed this speed with
Extended /	150	152	airbrakes extended or for airbrakes
Operating Speed	150	152	and area extended of for an brakes
V _{BE} (Knots) / V _{BO}			
Maximum Operating			Do not exceed this airspeed or Mach
Speed Limit			in any operation (V _{ver} is limiting
V _{MO} (Knots)	257	260	speed up to 10700 ft
M _{MO} (Mach #)	0.473	0.48	speed up to 10700 It)

Note: V_{MC} is not a limitation for this airplane.

Figure 2-1

Airspeed Limitations

Figure 2-2 Airspeed Limitation with Altitude

2.3. AIRSPEED INDICATOR MARKINGS

Airspeed indicator markings and their color significance are given in Fig. 2.3

MARKING	IAS VALUE OR RANGE	SIGNIFICANCE
White	70 - 152 KTS	Full Flap Operating Range. Lower limit is the
Arc		maximum weight stalling speed in landing
		configuration. Upper limit is maximum speed
		permissible with flaps extended.
Blue	114 – 124 KTS	One Engine Inoperative Best Rate of Climb at 1255
Sector		Kg (2767 lb) between S.L. and 14000 ft.
Red Lines	260 / 0.48	Maximum Speed for all operations (V_{MO} / M_{MO})

Figure 2-3

Airspeed Indicator Markings

NOTE: The Flight Simulator model depicts the Airspeed indicator as mounted in the prototype airframes. The markings are not present.

2.4. POWER PLANT LIMITATIONS

d)	Number of Engines	2
e)	Engine Manufacturer	MICROTURBO
f)	Engine Model Number	TRS 18-1-202
g)	Engine Operating Limits	
	See Fig. 2.4 and 2.5	
h)	Maximum starting altitude	20000ft
	See Fig. 2.5	

	OPERATING LIMITS				
OPERATING CONDITION	N%	EGT (°C) max	OIL PRESS. (bar) max	OIL TEMP. (°C) max	FUEL PRESSURE (bar)
TAKEOFF (1)	104	820 - 860	0.7 - 3	140	1.2 - 3
MAX CONTINUOUS	100	820	0.7 - 3	140	1.2 - 3

(1) Max time for take-off thrust: 2 minutes.

Figure 2-4

Figure 2-5 Operating Envelope

i) Fuel Specification

	NATO	SPECIFICATIONS		
FUELTIPE	CODE	FRANCE	U.K.	COMMERICAL DENOMINATION
Kerosene – 50°C	F34	AIR	D. Eng.	Fuel TRO
(+ S 748)		3405 /	RD 2453	Kerosene JP8
		C/F-34		AVTUR/ FS II
				(with antifreeze additive)
				MIL T 83133
Kerosene – 50°C	F35	AIR	D. Eng.	Fuel TRO
(without inhibitor)		3405 /	RD 2494	Kerosene JP8
		C/F-35		ASTM-D-1655
				JET A1 or JET A
				(without antifreeze additive)

For operations into forecast temperatures below +5°C the use of fuel anti-icing additive Phillips PFS-S5MB is required.

The additive concentration by volume shall be a minimum of 0.08% and a maximum of 0.15%.

(g) Oil Specification

Oil conforming to MIL-L-23699B or MIL-L-7808

(h) Ambient Temperature Limitations:

Maximum atmospheric Temperature at which compliance with cooling requirements is shown: 37.8°C (100°F).

2.5. POWERPLANT INSTRUMENT MARKINGS

Meaning of instrument markings and the value of limits are in Figure 2.6.

	Red Line	Yellow Arc	Green Arc	Yellow Arc	Red Line
INSTRUMENT	MINIMUM	CAUTION	NORMAL	CAUTION	MAXIMUM
	LIMIT	RANGE	OPERATING	OR TAKEOFF	LIMIT
Engine Rotational					
Speed			53 - 100	100 - 104	102
(N%) Indicator					
EGT Temperature			Up to 920	820 860	860
(°C)			0010820	820 - 860	800
Oil Pressure	0.7		0.7 – 3		
Oil Temperature			0-140		140
Fuel Pressure	0.55	0.55 – 1.2	1.2 – 3		

Figure 2-6

Powerplant Limits

2.6. WEIGHT LIMITS

It is the responsibility of the airplane owner and pilot to assure that the airplane is properly loaded. Maximum allowable weights are listed below. Refer to Section 5 "Weight and Balance" for loading instructions.

		Lb	Kg
a)	Maximum Takeoff Weight	2767	1255
b)	Maximum Landing Weight	2583	1172
c)	Maximum Zerofuel Weight	2037	925

2.7. CENTER OF GRAVITY LIMITS

(Refer to Fig. 2-7)

- (a) Forward Limit92.95 in (2361 mm) aft of Datum at all weights
- (b) Rearward limits
 94.58 in (2402 mm) aft of Datum at maximum takeoff weight
 97.02 in (2464 mm) aft of Datum at 2588 pounds (1172 Kg) or less (The chord is 35.433 in (900 mm) long)

NOTES

Straight line variation between points indicated. The Datum is located 82.677 inches (2100 mm) in front of wing leading edge.

Figure 2-7

Center of Gravity Limits

2.8. MANEUVERS LIMITS

This is an acrobatic category aircraft. For the following maneuvers the corresponding entry speeds are recommended:

Barrel Roll	Entry Speed: 180 KIAS
Aileron Roll	: 180 KIAS
Wing Over	: 180 KIAS
Looping	: 200 KIAS
Half roll at top of the loop	: 220 KIAS
Half Cuban Eight	: 200 KIAS
Chandelle	: 200 KIAS
Spin (cruise configuration on	ly) : Stall + 5 KIAS

Spin with flaps down and inverted spins are prohibited.

Negative g flight is limited to 30 seconds.

When above maneuvering speed (Refer to Figure 2-1) the controls must not be fully abruptly deflected.

2.9. FLIGHT MANEUVERING LOAD FACTOR LIMITS

d)	Positive Load Factor (Flaps Up	7.0 g
e)	Negative Load Factor (Flaps Up)	-3.5 g
f)	Positive Load Factor (Flaps Down	
	and / or Airbrakes Open)	3.5 g

2.10. FLIGHT CREW

Minimum Crew One Pilot

2.11. KINDS OF OPERATION

The standard airplane is approved for day and night operations under VFR conditions provided the minimum equipment required for the applicable operational rules is installed.

NOTE

Whenever oxygen is required, mask type MBU-5/P or similar must be used to be interfaced with aircraft provisions.

Oxygen masks are not part of the aircraft, they are part of the crew equipment. The airplane has not been approved for flight in known icing conditions.

2.12. FUEL LIMITATION

g)	Unusable Fuel Quantity	
	(for the complete system)	3 US Gal (11.5 lt)
h)	Usable Fuel Quantity	
	(for the complete system)	110.6 US Gal (418 lt)

Fill the internal tanks before fueling the tip tanks.

Close the wing fueling points before fueling the tip tanks.

Before fueling Connect the earth cable of the fueling vehicle to the nose landing gear.

2.13. MAXIMUM OPERATING ALTITUDE LIMIT

Flight up to 25'000 ft is approved if the aircraft is equipped with oxygen in accordance with the applicable operational rules.

2.14. SEATING LIMITATION

The maximum number of occupants is two (including the pilot).

Pilot must seat in the side of flight instruments.

2.15. PLACARDS

In Full view of the pilot:

RECOMENDED ENTRY SPEEDS FOR RCROBATIC MANELVERS
BARREL ROLL 180 KIAS
WING OVER 180 KIRS
LOOPING 200 KIRS
HALF ROLL AT TOP
HALF CUBAN HEIGHT 200 KIRS
CHANDELLE 200 KIAS
SPIN STALL+ 5 KIAS
INVERTED FLIGHT : 30 SEC MEX
INTENTIONAL SPINS WITH FLAPS AND/OR LND GR-AIRBR EXTENDED
SPIN RECOVERY : APPLY RUBBER
OPPOSITE TO SPIN ROTHTION WITH
STICK, AS SOON AS THE ROTATION
HAS STOPPED CENTRALIZE RUDDER
NELITRAL POSITION.
THIS RIRCRAFT IS APPROVED FOR
BRY-NIGHT YFR CONDITIONS.
TOTAS CONDITIONS PROMINITED
THE MARKINGS AND PLACARDS
INSTALLED IN THIS AIRPLANE
CONTAIN OPERATING LIHITATIONS
WHEN OPERATING THIS ATRA ANT
IN THE ACROBATIC CATEGORY.
OTHER OPERATING LIMITATIONS
NHICH MUST BE COMPLIED WITH
IN THIS CHIEGORY ARE CONTRI-
NED RIRPLANE FLIGHT MANUFL.

On Baggage Compartment

	11 KG
MHXIMUM BHGGHGE	24 LBS

On canopy Ceiling:

- Calibration placard for magnetic compass

SECTION 3

EMERGENCY PROCEDURES

3.1.	Introduction	.3-2
3.2.	Ground Operation Emergencies	.3-2
3.3.	Takeoff emergencies	.3-3
3.4.	In-Flight Emergencies	.3-5
3.5.	Landing Emergencies	.3-9

3.1. INTRODUCTION

This section is divided into Ground Operation Emergencies, Takeoff Emergencies, In-Flight Emergencies and Landing Emergencies.

Three basic rules, which apply to all emergencies, are established:

- 1. Maintain aircraft Control.
- 2. Analyze the situation and take proper action.
- 3. Land as the situation dictates or abandon the aircraft.

<u>NOTE</u>

The emergency conditions combined with the pilot's analysis of the situation, type of emergency, and proficiency are of prime importance in determining the urgency of the landing. The following information provides general guidance

Land As Soon As Possible:

An emergency will be declared.

A landing should be accomplished at the nearest suitable airfield considering the severity of the emergency, weather conditions, field facility, lighting, A/C gross weight.

Land As Soon As Practical:

Emergency conditions are less urgent and, although the mission is to be terminated, the degree of emergency is such that an immediate landing at the nearest suitable airfield may not be necessary.

3.2. GROUND OPERATION EMERGENCIES

3.2.1. Engine Fire or overtemperature during start

An engine fire during start may be caused by an excess of fuel inside the combustion chamber. The fire is indicated by flames from the exhaust stacks and rapid increase of EGT and/or FIRE warning light ON.

- 1. Engine MAST.....OFF
- 2. Motor engine or abandon A/C

3.2.2. Ground Abandonment

- 1. Canopy latchOPEN
- 2. Shoulder Harness..... Release
- 3. Headphone/microphone and oxygen mask (If applicable) Disconnect

3.3. TAKEOFF EMERGENCIES

General

When a take-off emergency occurs, the pilot is faced with the decision between aborting or continuing the takeoff.

The decision will be influenced by the nature of the take-off where the emergency is recognized, the ability to accomplish a safe abort or to continue take-off to a safe altitude for subsequent emergency landing or bail-out.

The decision for aborting a take-off will be influenced by two factors:

- Aircraft factor nature of the failure, gross weight, configuration, and speed
- Runway factor remaining runway length, existence of obstacles, condition of surface.

NOTE:

It is not possible to retract the landing gear when the aircraft is on the ground.

3.3.1. Engine Fire Before rotation

- Throttles.....IDLE
 Engine MAST (both).....OFF
- 3. Brakes APPLY
- 4. BATT switch.....OFF

3.3.2. Engine Failure before rotation (speed below 78 Knots)

- 1. Throttles.....IDLE
 - 2. Brakes APPLY
 - 3. Maintain direction with nosewheel steering
 - IF INSUFFICIENT RUNWAY REMAINS FOR A SAFE STOP
 - 4. Engine MAST (both)OFF
 - 5. BATT switch.....OFF

3.3.3. Engine control box failure after lift-off

This situation is indicated by:

- Engine RPM: Idle
- P NORM warning light: lighted
- 1. Airspeed CHECK
- 2. Direction Maintain
- 3. Identify inoperative engine
- 4. Corresponding emergency throttle.....Turn clockwise carefully

CAUTION

Emergency control system is provided with neither overspeed nor external temperature automatic limiting circuits. It is pilot's responsibility not to exceed the engine limitations (in these operating conditions).

- 5. Landing gear..... UP
- 6. Continue climb straight ahead and reach 95 KIAS

WHEN SAFE ALTITUDE IS REACHED

- 7. Primary engine throttle 100%
- 8. Emergency Throttle (inoperative primary control) . 100%
- 9. Accelerate to 115 KIAS
- 10. Flaps UP Land as soon as practical

3.3.4. One engine flame-out after lift-off (speed above 78 Knots)

- 1. Airspeed Check
- 2. Direction Maintain
 - 1 2 degrees bank towards the operative engine
 - Rudder as required for heading control
- 3. Throttle (operating engine) FULL
- 4. Landing Gear..... UP
- 5. Continue climb straight ahead and reach 95 KIAS

WHEN SAFE ALTITUDE IS REACHED

- 6. Inoperative engine MASTEROFF
- 7. Operative engine throttle 100%
- 8. Flaps UP
- 9. Accelerate to 115 KIAS
- Land as soon as practical

3.3.5. <u>Tire blowout at takeoff</u>

IF IT IS POSSIBLE TO STOP ON THE GROUND:

- 1. Throttles.....IDLE
- 2. Direction Maintain
- 3. Reduce load on the blown tire by lateral deflection of control stick to the side opposite the blown tire
- IF IT IS ENVISAGED TO ROLL OFF THE RUNWAY
- 1. Engine MAST.....OFF
- 2. BATT switch.....OFF

IF IMPOSSIBLE TO STOP ON THE RUNWAY

- 1. Continue Takeoff
- 2. Landing gear..... Leave DOWN
- 3. Airspeed below 140 KIAS
- 4. Consume as much fuel as possible
- 5. Land on the side opposite the blown tire
- 6. After touchdown proceed as specified for tire blowout on the ground.

3.4. IN-FLIGHT EMERGENCIES

3.4.1. Engine Failure

General

The engine failure mis defined as a loss of power.

Due to the nature of the control of the TRS-18-1-202 engine each electrical failure of the control drives the engine to idle.

Full authority on the engine may be restored by the emergency control system.

A complete engine failure, which is rarely encountered, may be caused by engine internal damage or loss of fuel supply.

The engine instruments often offer indication of impending engine failure.

Reduction of thrust and minimizing load factors will generally prolong the engine operating time prior to complete engine failure. Engine stoppage is generally due to improper or defective fuel supply system operation; this condition should be indicated by the FUEL PRESS indicator.

The engine failure does not cause sudden directional variation of this airplane.

The pilot must decide on the action to be undertaken:

To restart the engine or to continue the flight to the nearest practical field.

AFTER DETECTION OF A DEAD ENGTINE

- 1. Rudder.....Apply towards operating engine to keep direction
- 2. Operating Engine throttle Adjust as required
- 3. To Climb.....Adjust airspeed towards the best single engine climb speed

3.4.1.1. Engine Restart

1.	Altitude	Below 20'000 ft
2.	NOR BUS breaker	PULL (not simulated)
3.	Other unnecessary electrica	l loadsOFF
IN	OPERATIVE ENGINE	
4.	Engine MAST	OFF
5.	Throttle	IDLE
6.	Fuel BOOST pump	OFF
7.	Fuel shut-off light	check "SHUT"
8.	Engine MAST	ON
9.	RPM	Monitor
10.	EGT	Monitor
W	hen idling RPM is obtained	
11.	Generator Lights	Check
	Amber "GEN"	"OFF"
	Green "GEN"	"ON"
12.	Fuel pump lights	check "OFF"
13.	Fuel BOOST pump	ON
lf	unable to restart the engine:	
14.	Engine MAST	OFF

Land as soon as practical

3.4.1.2. Compressor Stall

A compressor stall is advised by a noisy stroke and fluctuations of engine parameters.

1. ThrottleRetard to IDLE

If stall has not been cleared

- 2. Engine MAST.....OFF
- 3. BOOST pump.....OFF
- 4. Proceed for engine restart

3.4.1.3. Engine fire

Engine fire is generally indicated by a red FIRE Warning on the central warning panel.

- 1. ThrottleReduce
- 2. Cockpit hot Air Close
- 3. Defroster..... Close

WARNING

In these conditions never exceed the following limits:

Speed: 160 KIAS n_z: +3.8 / -15 g

If light switches out:

- 4. RPM.....to maintain flight condition
- 5. Land as soon as possible
- If light remains ON, on the corresponding engine:
- 4. Engine MAST OFF
- 5. BOOST pump......OFF
- 6. Fuel shut-off light.....check "SHUT"

If fuel shut-off light OPEN is "ON":

- 7. Shut-off switch..... Depress
- Land as soon as possible.

3.4.1.4. Oil System Failure

An oil system failure is generally indicated by oil temperature increase and/or oil pressure decrease with subsequent re OIL P warning light "ON" (rated at .9 bar).

- (a) Low Pressure
- 1. Throttle Advance to obtain 0.7 bar
- 2. Land as soon as practical

If minimum oil pressure cannot be obtained:

- 1. ThrottleIDLE
- 2. Engine MAS.....OFF
- 3. BOOST pump.....OFF
- 4. Land as soon as practical

(b) High Temperature

- 1. Throttle Reduce to obtain normal value
- 2. Resume normal throttle setting, monitor temp.
- If normal value cannot be obtained
- 2. Throttle Maintain Low RPM

3. Land as soon as practical

3.4.2. Electrical Fire

Circuit breakers isolate all electrical circuits in the aircraft and automatically interrupt power when a short circuit occurs.

However, if a circuit breaker fails to operate, the wire will overheat causing the insulator to ignite; this will be evident by smoke and/or fumes in the cockpit.

For smoke or fumes elimination refer to the following paragraph.

3.4.2.1. Smoke or fumes in the cockpit

- 1. Ventilation inlets.....OPEN
- 2. Cabin Heater and Defrost CLOSED
- 3. NOR BUS Breaker PULL (not simulated)
- 4. Other unnecessary electrical breakers PULL (not simulated) If Smoke or fumes persist:
- If Smoke or fumes persist:
- 5. Oxygen Mask..... Wear
- 6. Diluter 100% (not simulated)
- If no reduction of smoke is observed:
- 7. Land as soon as possible

3.4.3. Electrical System Failure

3.4.3.1. Single Generator Failure

The Failure of a generator is indicated by:

- Amber GEN Warning light: "ON"
- Green GEN Light: "OFF" (on control panel)
- Ammeter: 0
- 1. GEN switch.....OFF
- 2. NOR BUS breaker OUT (not simulated)
- 3. GEN switch.....ON
- 4. GEN Arm PRESS

If green light keeps "OFF" or GEN switch trips out again:

- 5. GEN switch.....OFF
- 6. Land as soon as practical

The electronic control of the involved engine is still fed by the other generator and by the battery.

If Amber and Green GEN lights are both "ON", the generator is feeding its own engine but is disconnected from the Main Busbar.

In this case it is advisable to keep the NOR BUS breaker OUT to avoid overcharge for the connected generator.

3.4.3.2. Dual Generator Failure

- 1. GEN switchesOFF
- 2. NOR BUS breaker OFF (not simulated)
- 3. Descend below 10000 ft and Fuel BOOST pumps ... OFF
- 4. Unnecessary electrical equipmentOFF
- In Night Flight:
- 5. Instrument lights.....OFF
- 6. Internal Flood Light.....ON
- (NOTE: In this simulation, these two lights are tied together. They are both ON or OFF)
- 7. Proceed as for single generator failure to reset at least one generator.
- If unable to reset one generator:
- 8. Land as soon as possible

3.4.4. Fuel System Failure

3.4.4.1. Hight Fuel Pressure warning light lighted

1. Throttle Reduce

- If light is still on
- 2. Descend as low as practical
- If light is still on
- 3. Land as soon as practical.

3.4.4.2. Low fuel pressure warning light lighted

- 1. Descent below 10000 ft as soon as practical
- 2. Land as soon as practical.

3.4.4.3. Low fuel pressure (lower than 1.2 bar)

- 1. BOOST pump switchcheck ON
- 2. Throttle Reduce
- 3. Descend below 10000 ft as soon as practical
- 4. If pressure still low...... Land as soon as practical.

3.4.4.4. Leak of oxygen supply

- 1. DiluterSet to emergency (not simulated)
- 2. Bottle pressure Check
- 3. Blinker Check
- 4. Mask connection..... Check

If leak persists

5. Descent below 10000 ft

3.4.5. Static Source Malfunction

- 1. Alternate Source Valve knob PULL
- 2. Altitude and airspeed correctionApply (use correction card)

3.4.6. <u>Trim Runaway</u>

In case of trim runaway speeds can be maintained by applying a proper control force.

1. Trim breaker PULL (not simulated)

NOTE:

Do not reinsert the breaker.

2. Land as soon as possible

3.4.7. <u>Trim spring failure</u>

The trim spring failure causes the tendency of the airplane to pitch up.

The airplane is easily controllable by applying a pitch-down control force.

The force depends on the speed, the higher the speed the higher the force, being very low below 140 KIAS.

Land as soon as practical.

3.5. LANDING EMERGENCIES

WARNING

Make sure the harnesses are locked and tightened before an emergency landing.

3.5.1. Forced Landing

1.	Airspeed	Best Glide	
2.	Landing site	Select	
3.	Emergency radio call	Transmit	
4.	Shoulder Harness	Lock	
5.	Landing gear	DOWN if suitable	
6.	Flaps	as required	
7.	Airbrakes	as required	
Prior to touchdown:			
8.	Engine MAST (both)	OFF	
9.	BATT switch	OFF	

3.5.2. Single engine approach and landing

- 1. Engine shutdown procedure Completed
- 2. Normal landing procedure.....perform

3.5.3. <u>Single engine Go-around</u>

1.	Throttle	FULL
2.	Airbrake	CLOSED
3.	Attitude	with positive rate of climb
4.	Landing gear	UP
5.	Airspeed	increase
6.	RPM	
7.	Flaps	UP
8.	Airspeed	blue sector (To climb)

3.5.4. No flaps approach and landing

- 1. Perform a normal approach
- Landing gear.....DOWN
 Airspeed......105 KIAS
 Airbrakes.....as required After touchdown:
 Throttles.....IDLE
- 6. Airbrakes.....OPEN
- 7. BrakesApply as required

3.5.5. Emergency Landing Gear Extension

- 1. Airspeed below 120 KIAS
- 2. Flapsas required
- 3. LND Gear circuit breaker OUT (not simulated)
- 5. L.G. disconnect lever..... release and pull
- 6. Emergency Gear Extension Cover......Remove
- 7. Rod connected to emergency gear extension coverInsert in lever
- 8. Emergency Lever....move forward up to be hooked
- 9. 3 Green lights.....ON

NOTE:

In this simulation, steps 5 to 8 are accomplished together by clicking on the Emergency Gear Extension cover.

3.5.6. Belly landing or L.G. partially extended

- 1. Shoulder harness LOCK
- 2. Fuel consume to the minimum (1/8)
- 3. Flaps.....DOWN
- 4. Airbrakes.....OPEN
- 5. Make anormal approach
- Before touchdown:
- 6. Engine MAST (both)OFF
- 7. BATT switch.....OFF
- 8. Contact runway at speed as slow as possible
- 9. After a complete stop Abandon A/C
- In case of unsafe nose gear
- 1. Land in nose-up attitude
- 2. Control stick aft, to hold nose up as long as possible
- 3. After a complete stop, abandon A/C.

3.5.7. Landing with asymmetric fuel load

Increase approach speed by 5 KTS with a dissymmetry of 6 filaments of fuel-level instrument.

Over 6 filaments increase the speed of 1 knot for each filament.

SECTION 4 NORMAL PROCEDURES

4.1.	General	4-2
4.2.	Preparation for flight	4-2
4.3.	Pre-Flight Check	4-2
4.4.	Take Off Checks	4-10
4.5.	In Flight Checks	4-11
4.6.	Post-Flight Checks	4-12
4.7.	Oxygen System	4-12
4.8.	Spin Characteristics	4-13

4.1. GENERAL

This section describes the recommended procedures for the conduction of normal operations for C22J airplanes. All the Required procedures and those necessary for operation of the airplane as determined by the operating and design features of the airplane are presented.

Pilots should familiarize themselves with the procedures given in this section in order to become proficient in the normal operations of the airplane.

4.2. PREPARATION FOR FLIGHT

4.2.1. <u>Airspeed for safe operations</u>

The airspeed limitations are contained in Section 2.

The following airspeeds are those which are significant to the operations of the airplane.

The figures are for standard airplanes flown at maximum gross weight under normal conditions at sea level.

	KIAS
Best Rate of Climb Speed (Flaps Up)	157
Best Rate of Climb Speed with one engine	124
inoperative	
Final Approach Speed	95
Maximum demonstrated crosswind velocity	18 Kts

4.2.2. Weight and Balance

Refer to Section 2 for the weight and balance limitations, and Section 6 for correct Loading and C.G. computation.

4.3. PRE-FLIGHT CHECK

4.3.1. Before Exterior Inspection

- 1. Airplane status or airworthiness, paper on board... CHECK
- 2. CanopyOPEN
- 3. Fire Extinguisher NEARBY
- 4. Landing Gear LeverDOWN
- 5. Avionic SwitchesOFF
- 6. Circuit Brakers..... Check IN (not simulated)
- 7. BATT.....ON; check voltage
- 8. Elevator Trim..... "NOSE UP"
- 9. FlapsCheck UP
- 10. Airbrakes LeverCheck CLOSED
- 11. Fuel Quantity Check

NOTE:

If Dissymmetry is above 3 filaments FILL the tanks UP to equalize the levels.
12.	Landing Gear	3 Green lights "	ON"
13.	BATT		OFF
14.	Oxygen	Check Pres	sure

4.3.2. <u>Exterior Inspection</u>

During the exterior inspection (Fig. 4-1) the aircraft shall be checked for general condition, security of access doors and panels and filler caps for hydraulic fluid, oil and fuel leaks, as well as for the following:

Figure 4-1 Walk Around

A. NOSE

- 1. Canopy CLOSED
- 2. External Canopy Handle..... LOCKED
- 3. Left Static Port ... Clean and free from obstructions
- 4. Windshield Clean
- 5. Ventilation Air Intake free from obstructions
- 6. Wheel and Tire.....Condition, inflation and alignment of slippage marks
- 7. Right Static Port . Clean and free from obstructions
- 8. OAT Probe Clean and free from obstructions
- 9. Antennas (Lower Side)......Condition and security

B. RIGHT WING

1.	Leading Edge Condition
2.	Upper Surface Condition
3.	Lower Surface Condition
4.	Stall Warning Vane Condition and Movement
5.	Mooring RopeRemove (If applicable)
6.	Wing Tank Cap Closed and Locked
7.	Navigation and anti-collision light Condition
8.	Tip Tank Condition and Security
9.	Tip Tank CapClosed and Locked
10.	Tip Tank Cocks Closed. Check for fuel drips
11.	Antenna (Lower side)Condition and security
12.	Aileron Condition

- 13. Airbrake Condition
- 14. Wing Flap Condition and free play

C. RIGHT MAIN LANDING GEAR

- 1. Wheel Chock In place
- 2. Wheel and tire......Condition inflation and alignment of slippage marks.
- 3. Landing Gear Leg Condition
- 4. Fuse Bolts..... Condition
- 5. Brake and line Condition
- 6. Landing Gear Bottom Door... Condition and Locked
- 7. Landing Gear Lateral Door Condition

D. FUSELAGE – RIGHT SIDE

- 1. Engine Air Intake (NACA Inlet)Condition and clear of obstruction
- 2. Engine Cowling.....Condition and security
- 3. Right Exhaust Pipe Free and conditions

E. TAIL

- 1. Pitot Tube.....cover removed and clear of obstruction
- 2. Fixed and movable surfaces.Condition and security
- 3. Anticollision light Condition
- 4. VOR antennas Condition and Security
- 5. Elevator SpringsCondition and security

F. FUSELAGE – LEFT SIDE

- 1. Left Exhaust Pipe..... Free and conditions
- 2. Engine Cowling.....Condition and security
- 3. Engine Air Intake (NACA Inlet)Condition and clear of obstruction

G. LEFT MAIN LANDING GEAR

- 1. Wheel Chock In place
- 2. Wheel and tire......Condition inflation and alignment of slippage marks.
- 3. Landing Gear Leg Condition
- 4. Fuse Bolts..... Condition
- 5. Brake and line Condition
- 6. Landing Gear Bottom Door...Condition and Locked
- 7. Landing Gear Lateral Door Condition

H. LEFT WING

1.	Wing Flap Co	ondition and free play
2.	Airbrake	Condition
3.	Aileron	Condition
4.	Antenna (Lower side)C	Condition and security
5.	Tip Tank Cocks Close	d. Check for fuel drips
6.	Tip Tank Cap	Closed and Locked
7.	Tip Tank C	ondition and Security
8.	Navigation and anti-collision	light Condition
9.	Wing Tank Cap	Closed and Locked
10.	. Mooring Rope F	Remove (If applicable)
11.	. Lower Surface	Condition
12.	. Upper Surface	Condition
13.	. Leading Edge	Condition

4.3.3. Interior Inspection

1.	Parachute	As	required
----	-----------	----	----------

- 2. Pilot's seat.....Adjust
- 3. Pedals.....Adjust
- 4. Safety Harness......Condition and security of the locking device
- 5. Headphone and microphoneConnect
- 6. Oxygen hose Connect (if required)
- Flight Controls.....Free
 Pitot Heat.....OFF
- 10. DMEOFF
- 11. Altitude AlerterOFF
- 12. Radio 1 & 2.....OFF 13. VOR 1 & 2.....OFF

14. Transponder.....OFF

- 15. ADF.....OFF 16. Turn and SlipOFF
- Attitude IndicatorOFF
 Lights (Landing, Nav, Anticol, internal).....OFF
 Airbrakes.....CLOSED
 Hot Air controlCLOSED
- 21. Defogger CLOSED
- 22. Throttle FrictionAdjust
- 24. Emergency Throttle Fully counter-clockwise

CAUTION

If the throttle is not in the idle position, after the startup the engine will immediately at RPMs higher than idle. This could damage the engine

25. External power.....Connected (not simulated)

NOTE

In order to preserve the life of the battery, the engine startup is only to be done by aircraft battery when an external power source 28 VDC/20A is not available.

26.	BATT s	switch	.ON
Wa	rning P	anel Lights	
27.	GEN lig	ghts (amber)"	ON"
28.	OIL lig	hts"	ON"
29.	LOW P	PRES light "	ON"
30.	PUMP	lights"	ON"
31.	Lights		
	-	FIRE	
	-	HIGH PRESS	

- And engine instrument filamentsPRESS to TEST

Engine Control Panel

32. Fuel Shut-Off flights"SHUT"

33.	Engine MAST switches	OFF
34.	Fuel BOOST switches	OFF
35.	Engine TEST switches	OFF
36.	Landing Gear lights	Press to TEST.

INTERIOR INSPECTION FOR NIGHT FLIGHT

- 1. Instrument Lights Check
- 2. Position Lights..... Check
- 3. Strobe lights Check
- 4. Flood light Check
- 5. Landing Light..... Check

NOTE

Continuous use of the landing light for more than 5 minutes should be avoided.

4.3.4. Dry Crank Motoring

NOTE

Dry crank motoring is necessary each time unburnt fuel is supposed to be present in the combustion chamber, such as after an aborted starting.

- 1. Engine MAST switches Check OFF
- 2. VENT button......keep depressed as long as necessary (max 10 Sec.)

4.3.5. <u>Starting the Left Engine</u>

- 1. Left engine MAST switchON (engine will start automatically)
- 2. EGT......Check within limits (860°C max then below 500°C)
- 3. RPM..... Check
- 4. Oil Pressure Check increasing
- 5. Fuel PUMP lights.....Check "OFF"
- 6. Oil light.....Check "OFF"

After startup

- 7. GEN switch Check "ON"
- 8. Generator lights Check:
 - Amber GEN L "OFF"
 - Green L GEN "ON"

NOTE

The amber light "ON" indicates the generator not connected to the MAIN busbar. The green light "ON" indicates the generator is properly operating.

9. Voltage Check (27 – 29 V)

4.3.6. Starting the Right Engine

 Right engine MAST switchON (engine will start automatically)

NOTE

During the starting of the second engine the generator of the running engine is automatically disconnected from the MAIN busbar and the amber GEN L light is "ON"

for about 10 seconds.

- 2. EGT......Check within limits (860°C max then below 500°C)
- 3. RPM..... Check
- 4. Oil Pressure Check increasing
- 5. Fuel PUMP lights.....Check "OFF"
- 6. Oil light.....Check "OFF"

After startup

- 7. GEN switch.....Check "ON"
- 8. Generator lights Check:
 - Amber GEN R "OFF"
 - Green R GEN "ON"
- 9. Voltage.....Check (27 29 V)
- 10. RPM and EGT Stabilized
- 11. External power (if used)..... Disconnect 12. Ammeters Check
- 13. Engine instruments...... Check within limits

4.3.7. Emergency engine control box check

This check must be performed at the first flight of the day

- 1. Left ThrottleIDLE
- 2. L TEST switch.....ON
- 3. PUMP NORM L light Check "ON"
- 4. Left Emergency Throttle Clockwise to increase

NOTE

Emergency control box gives no correction for external temperature. Limitation for max RPM as shown in fig 4-2 must be monitored by the pilot.

- 5. Engine instruments Check within limits
- 6. Left Emergency throttle Fully counterclockwise
- 7. L TEST switch.....OFF
- 8. Right Throttle.....IDLE
- 9. R TEST switchON
- 10. PUMP NORM R lightCheck "ON"
- 11. Right emergency throttle..... Clockwise to increase

NOTE

Emergency control box gives no correction for external temperature. Limitation for max RPM as shown in fig 4-2 must be monitored by the pilot.

- 12. Engine Instruments..... Check within limits
- 13. Right emergency Throttle ... Fully counterclockwise
- 14. R TEST switchOFF

4.3.8. Fuel Filter Check

15. LOW PRESS light	Check "OFF"
(max 5´after engine startin	g)

- 16. L BOOST pumpCheck "OFF"
- 17. Left throttle..... Advance for 100% RPM
- 18. Fuel Pressure.....Check within limits (0.95 bar min)
- 19. Left Throttle IDLE
- 20. L BOOST PUMPON 21. R BOOST pump.....Check "OFF"
- 22. Right throttle Advance for 100% RPM
- 23. Fuel Pressure......Check within limits (0.95 bar min)
- 24. Right Throttle......IDLE
- 25. R BOOST PUMPON

Speed Limitation in function of Air Intake temperature

4.3.9. Before Taxiing

1. Avionic Equipment.....ON

- 2. Communication EquipmentON
- 3. NAV equipmentas required
- 4. Audio panel.....as required
- 5. Lights.....as required
- 6. Flap control and instrument operation Check
- 7. Airbrake operation, check Set Closed
- 8. Trim control and instrument operation...... Check
- 9. Radio call.....as required

4.3.10. <u>Taxiing</u>

1.	Wheel chocks	Remove

- 2. Parking Brake Release
- 3. Brakes Check
- 4. Oxygen diluter.....as required (not simulated)

CAUTION

The nose wheel is mechanically linked to the rudder pedals through the steering system. Do not use differential braking to turn. Such an action could damage the nose wheel steering mechanism. Brakes must be used evenly for slowing down and stopping aircraft only. Steering must be accomplished by use of rudder pedals only.

NOTE

See figure 1-2 for the minimum turning radius and clearance required.

4.3.11. Before Takeoff Checks

1.	Flight Controls	Check Free
2.	Trim	Set for takeoff position

- 3. Airbrakes..... Check closed
- 4. Flaps.....Set DOWN
- 5. Engine instruments Check within green sectors
- 6. Flight Instruments..... Check
- Fuel quantity.....Check
 Safety HarnessLOCKED
- 9. CanopyClosed and Locked

4.4. TAKE OFF CHECKS

4.4.1. Take-off

1.	AircraftAligned with runway	
2.	Attitude and heading indicators Check and Adjust	
3.	BrakesApply	
4.	Throttle Full (max. 2 min.)	
5.	Engine ParametersMonitor within limits	
	(EGT: 860°C max – Oil Temp. 140°C max)	
6.	Brakes Release	
7.	Direction Maintain with nose wheel steering	
8.	At v78 KIASRotate A/C to takeoff attitude	
9.	Maintain attitude (A/C lift off at 80 – 85 KIAS)	
Afte	er Take-off:	
10.	BrakesApply	
11.	Landing GearUP and Check	
	NOTE	
	Landing gear retraction time is	7 seconds.
12.	120 KIAS Flaps UP and position check	
13.	RPMReduce (100%)	
14.	Trim As required	

CAPRONI VIZZOLA

C 22 J

4.5. IN FLIGHT CHECKS

4.5.1. <u>Climb</u>

On Climb-out after take-off, it is recommended that the best angle of climb speed be maintained only if obstacle clearance is a consideration.

- 6. Altimeter.....Set as required
- 7. Windshield defroster As required
- 8. Throttle As required

4.5.2. <u>Before Landing</u>

NOTE

Airbrake must be deployed after flaps lowering to avoid lift drop in case of airbrake retraction. Airbrakes down and flaps up is not a normal approach configuration.

- 1. SpeedReduce to 140 KIAS
- 2. Flaps..... Down
- 3. Airbrakes..... Open
- 4. Approach Speed (flaps and airbrakes)95 KIAS
- 5. ThrottleAs required for 95 KIAS
- 6. Landing Light As required

4.5.3. <u>Balked Landing</u>

- 1. Throttle Full forward
- 2. Airbrakes..... Close
- 3. Continue normal approach until engines are at max thrust and speed increases
- 4. Establish take-off attitude with positive rate of climb
- 5. Landing Gear..... UP
- 6. 120 KIAS Flaps UP
- 7. RPM.....Reduce to max. continuous
- 8. Trim..... As required

4.5.4. Landing

- 1. Start a gradual flare out
- 2. Touchdown on main wheels
- 3. Use brakes only to reduce speed
- 4. Maintain direction with nose wheel steering

4.5.5. <u>Crosswind Approach and Landing</u>

If a crosswind landing is necessary approach with increased speed (about 5 KIAS).

1. Lower the wing into the wind to maintain the runway direction Before Touchdown

2. Align the wheels with the runway

4.6. POST-FLIGHT CHECKS

4.6.1. <u>After Landing</u>

1.	Landing Light	OFF
2.	Airbrakes	CLOSE
3.	Flaps	UP
4.	Pitot Heating	OFF
5.	Windshield Defroster	CLOSE
6.	Trim	NEUTRAL
7.	Transponder and NAV systems	OFF

4.6.2. Engines Shut Down

1.	Parking Brake	APPLIED
2.	Throttle	IDLE
3.	Radios	OFF
4.	Attitude Indicator	OFF
5.	Turn & Slip Indicator	OFF
6.	Internal & External Lights	OFF
7.	L & R BOOST pumps	OFF
8.	Stabilize EGT	Check
9.	Engine MAST	OFF (2)
10.	Engine turn to stop $(52 - 20")$	CHECK
11.	Battery	OFF

4.7. OXYGEN SYSTEM

4.7.1. <u>Generals</u>

The pilots receive oxygen from the diluter demand oxygen supply system, which mixes the proper ratio of oxygen and cockpit air at a given altitude. A diluter demand oxygen regulator on each side3 of the cockpit provides the pilots with individually regulated control of the oxygen system.

The control lever has three positions (not simulated):

- NORMAL	For delivery of automatically diluted oxygen at pilot demand
- 100 %	For delivery of 100% oxygen
- EMERGENCY	For delivery of 100% oxygen at positive pressure

WARNING

If any symptoms occur suggestive of the onset of hypoxia, immediately set the control lever to the EMERGENCY position and descend below 1000 ft.

Whenever carbon monoxide or other noxious gas is present or suspected set the diluter control lever to 100% and continue breathing undiluted oxygen until the danger is no longer present.

4.7.2. Oxygen Duration

The oxygen supply is provided by a 6.7 liters pressure cylinder.

With the cylinder charged to 2150 PSI the oxygen duration at 25000 ft for a crew of two is: 1h 45 min. The duration time is doubled when only one pilot is using oxygen.

4.7.3. Oxygen Masks

Mask type MBU-5/P or similar can be used interfaced with aircraft provisions.

Oxygen masks are not part of the aircraft, they are part of the crew equipment.

4.8. SPIN CHARACTERISTICS

4.8.1. <u>Spin</u>

The aircraft has been approved for intentional spin with gear and flaps up only.

Spins in any other configuration or inverted spins are prohibited.

4.8.2. Spin Entry

A spin may be entered at a speed 5 KIAS above stall and rapidly applying full back stick and full rudder in the desired direction of the spin and maintaining full back stick.

4.8.3. Spin Behavior

After rudder application the aircraft yaws for about 30°, then the nose moves down and the wings begin to rotate.

After ¼ turn, the nose is 45° down and the wings are 90° rotated.

A tendency to nose up to 15° may be manifested during the first turn.

The time for the first tur is 4 seconds.

After the first 1 ¼ turn the spin is stabilized with the nose down (45° - 60°)

The rotation is rapid (3 secs) per turn wide and sudden oscillation.

The altitude loss for each turn is 450 – 550 ft.

4.8.4. Spin Recovery

To effect the spin recovery, Apply positive rudder opposite to spin rotation, maintain neutral aileron and full back stick.

After this phase the yaw rotation is reduced and the nose moves down.

Release the stick forward to neutral position and centralize the rudder control.

The aircraft will recover from the spin within ½ turn after neutral stick is applied.

CAUTION

The stick should be released for the necessary amount only, to avoid too steep attitude and to reduce the altitude loss during the dive pull up phase.

Inverted attitude recovery may be obtained by excessive forward stick application.

SECTION 5

PERFORMANCE

5.1.	General	.5-2
5.2.	Summary of Required Performance	.5-2
5.3.	Wind Component	.5-2
5.4.	Stall Speeds	.5-4
5.5.	Take-Off Distance over 50 ft Obstacle	.5-5
5.6.	Climb Performance	.5-5

5.1. GENERAL

This section provides performance information applicable to the C22J required by certification regulations.

The performance information, provided by the performance charts in this section, is based on measured Flight Test Data corrected to I.S.A. Standard Day conditions and analytically expanded for various parameters of weight, altitude temperature.

5.2. SUMMARY OF REQUIRED PERFORMANCE

The following Performance figures are based on measured Flight Test Data corrected to I.S.A. Standard Day conditions and to the Maximum Takeoff Weight, for takeoff data, and to the maximum landing weight for landing data.

1.	Takeoff distance over 50 ft obstacle	950 m
	(95 KIAS, 18° Flaps, Sea Level)	(3117 ft)
2.	Takeoff Rate of Climb	
	(141 KIAS, 18° Flaps, Sea Level	1600 ft/min
3.	Landing Distance from 50 ft Obstacle	
	(95 KIAS, 18° Flaps, Airbrakes Open, Sea Level)	825 m
		(270711)

5.3. WIND COMPONENT

Maximum Demonstrated crosswind velocity for takeoff and landing is 18 Knots.

Refer to Figure 5-1 to compute crosswind component.

Figure 5-1

5.4. STALL SPEEDS

Associated Conditions

Associated Conditions		<u>Example</u>
Power	Idle	Landing Gear
Landing Gear	Up or Down	Flaps
Center of Gravity	Most Forward	Airbrakes
Weight	1255 Kg	Angle of Bank
		Stall Speed in Level Flight

Angle of Bank	15°
Stall Speed in Level Flight	70 KIAS
V _{S\$} /V _{SL}	1.02
Stall Speed in Turning Flight	71.4 KIAS

Down Down Open

NOTES:

- 1. Maximum Altitude loss during stall recovery is approximately 400 ft.
- 2. Maximum nose down pitch attitude and altitude loss recover from single engine stalls are approximately 20° and 400 feet respectively.
- 3. Effect of bank angle on stall speed: see Figure 5-2

FLAP	LANDING GEAR	AIRBRAKES	KIAS	KCAS
UP	RETRACTED	CLOSED	79	83
DOWN	EXTENDED	CLOSED	73	78
DOWN	RETRACTED	CLOSED	75	78
DOWN	EXTENDED	OPEN	70	73.5

 $V_{S\varphi}$ = STALL SPEED IN TURNING FLIGHT

VSL = STALL SPEED IN LEVEL FLIGHT

5.5. TAKE-OFF DISTANCE OVER 50 FT OBSTACLE

Air Temperature	20°C
Altitude	2000 ft
Takeoff Weight	1175 Kg
Wind	5 Kt Head
Takeoff Distance	920 m

5.6. CLIMB PERFORMANCE

5.6.3. <u>Best Rate of Climb Speed – Flaps Up</u>

Thrust	Continuous (100%)				
	2 engines				
Flaps	Up				
Airbrakes	Closed				
Landing Gear	Retracted				
Weight	Maximum Takeoff				
Atmosphere	ISA Standard Day				
15000					

5.6.4. Best Angle of Climb Speed – Flaps Up

5.6.5. One Engine Inoperative Climb

See Fig. 5-3.

Associated Conditions:

Thrust	Continuous (100%)
Flaps	Up
Best Rate of Climb Speed	124 KIAS at Sea Level
	114 KIAS at 14000 ft
	Linear variation between S.L. and 14000 ft

Example:

Outside Air Temperature	20°C
Altitude	2000 ft
Weight	1100 Kg
Rate of Climb	360 ft / min.

Figure 5-3

5.6.6. <u>Best Angle of Climb Speed – Flaps and Landing Gear Down</u>

Continuous (100%)	
2 engines	
Down	
Closed	
Extended	
Maximum Takeoff	
ISA Standard Day – 5000 ft Altitude	
105 KIAS	
863 ft / min.	

SECTION 6 WEIGHT AND BALANCE

6.1.	Introduction	.6-2
6.2.	Weight and Balance Determination for Flight	.6-2

6.1. INTRODUCTION

This section contains the necessary information and procedures for correct loading and center of gravity calculation of the airplane

This section also contains procedures to establish the weight and balance for flight and describes the arms and weights of all equipment installed on the airplane. Weight and Balance limitations specified in Section 2 must never be exceeded and it is the pilot's responsibility to ensure that the airplane is loaded within the limits before each flight.

Center of gravity is a determining factor for handling characteristics for take-off and longitudinal static stability.

A properly loaded airplane will provide good performance within the flight envelope.

Using then running empty weight and C.G. location, the pilot can easily determine the weight and C.G. position for the loaded airplane by computing the total weight and moment and then determining whether they are within the approved envelope.

6.2. WEIGHT AND BALANCE DETERMINATION FOR FLIGHT

NOTE:

It is the responsibility of the pilot and aircraft owner to ensure that the airplane is loaded properly.

The weight and balance at take-off are to be computed as follows:

- a) Using the value of Fig. 6-1 add the weight and moment of all items to be loaded to the Running empty Weight on the Weight and Balance form (Figure 6-2).
- b) Compute the total weight and moment and determine the C.G. location.
- c) Locate on Figure 6-3 Center of Gravity Envelope the load condition. If the point falls within the envelope, the loading meets the weight and balance requirements.

OCCUP	ANTS	FUEL						
Weight	Moment	Liters	Weight	MOMENT (Kg * m)				
(Kg)	(Kg * m)		(Kg)	Main Tanks	Tip Tanks			
			0.8 Kg/l					
55	82.5	20	16	38	40			
60	90	40	32	76	80			
65	97.5	60	48	113	119			
70	105	80	64	151	159			
75	112.5	100	80	189	199			
80	120	120	96	227	238			
85	127.5	137.5	110	260	273			
90	135	140	112	264				
		160	128	302				
		180	144	340				
		200	160	378				
		220	176	415				
		240	192	453				
		260	208	491				
		275	220	519				

WEIGHT AND BALANCE LOADING FORM

	WEIGHT	MOMENT (Kg * m)
Running empty Weight	738	1882
Pilot's Seat		
Copilot's Seat		
Baggage		(1)
Main Wings Tank Fuel		
Tip Tanks Fuel		
Other		
Totals		

e.e. station (moment/ weight)	C.G. Station (Moment/Weight)	
-------------------------------	------------------------------	--

Totals must be within approved weight and C.G. limits (Fig 6-3) It is the responsibility of the pilot to ensure that the airplane is loaded properly Note (1): The influence on C.G. is negligible.

Figure 6-3

Center of Gravity Envelope

NOTE:

This Flight Simulator Model provides an automated version of the Load Form in the documents folder. Moments are automatically calculated, and the C.G. location is automatically plotted on the Center of Gravity envelope.

Figure 6-2

SECTION 7

PANEL & SYSTEMS MANUAL

	. Main Instrument Panel	7.1.
7-14	. Lower Panel (between seats)	7.2.
Error! Bookmark not defined.	. GPS Panel	7.3.
7-14	. Checklist Panel	7.4.
	. General System Notes	7.5.

7.1. MAIN INSTRUMENT PANEL

This section gives a pictorial view of all the instrument panels in the aircraft.

- Figure 7-1 depicts the main instrument panel
- Figure 7-2 depicts the panel located between the two seats

In this Flight Simulator model, some controls may require additional explanation:

Toggle Switches	Left Click			
Multi Position	Left Click			
switches & Knobs	Mouse Wheel			
Knobs & Levers	Left Drag			
	Mouse Wheel			
Rotary knobs	Left Click			
	Mousewheel			
Safety Covered	Left Click to toggle Cover			
Switches				
Altitude Alerter	Mouse wheel:			
Setting switch	Increment/Decrement			
	by 1 step.			
	Drag Up/Down:			
	Keep Incrementing /			
	Decrementing			
Clock Knob	Pull Out: Start Chronometer			
	Center: Stop Chronometer			
	Push In: Reset timer			

- 1. Pedal Adjust Handle, LH
- 2. Parking Brakes Handle
- 3. Warning Lights Test Button
- 4. Pitot Heat Switch
- 5. Oxygen Blinker, LH
- 6. Turn & Bank Indicator
- 7. Accelerometer
- 8. Airspeed Indicator
- 9. ADF Indicator
- 10. Attitude Indicator
- 11. Course Indicator (HSI)
- 12. Altimeter
- 13. Rate of Climb Indicator
- 14. Fast Slave Switch
- 15. Attitude Indicator Switch
- 16. Engine Fire Warning Lights
- 17. Standby Compass
- 18. Warning Lamps
- 19. Audio Marker Panel
- 20. COMM 1 Equipment

- 21. COMM 2 equipment
- 22. NAV 1 equipment
- 23. NAV 2 equipment
- 24. Transponder equipment
- 25. ADF equipment
- 26. Landing Gear Indicator
- 27. Turn & Bank Switch
- 28. Anticollision Lights Switch
- 29. Position Light Switch
- 30. Landing Light Switch
- 31. Landing Gear Lever
- 32. LH & RH Gen Switches
- 33. Battery Switch
- 34. Eng. Control Test Buttons
- 35. Eng. Dry Crank Buttons
- 36. Eng. Boost Pump Buttons
- 37. Eng. Master Switches
- 38. Eng. Shut-Off Switches
- 39. Flaps Position Indicator

- 40. Longitudinal Trim Indicator
- 41. DME Selector Switch
- 42. Integrated Multi Display
- 43. Altitude Alerter
- 44. DME indicator
- 45. NAV 2 Indicator
- 46. Oxygen Blinker, RH
- 47. Clock
- 48. Alternate Static Source
- 49. Pedal Adjust Handle, RH
- 50. GEN Arm Button
- 51. Instrument Lights Potentiometer
- 52. Flaps Switch
- 53. LH & RH Throttles
- 54. Emergency Throttles
- 55. Close Pedestal Panel
- Figure 7-1

- 7.1.1. <u>Pedal Adjust Handle, LH</u> This function is not simulated.
- 7.1.2. <u>Parking Brakes Handle</u> Actuates a mechanical cable linkage to lock the brakes for parking.
- 7.1.3. Warning Lights Test Button

Momentary push-button. Illuminates the Central warning lights (7.1.16, 7.1.18) and the Integrated Multi Display (7.1.42).

7.1.4. <u>Pitot Heat Switch</u>

Circuit Breaker and Control Switch that feeds the Pitot Heating via the main electrical bus.

7.1.5. Oxygen Blinker, LH

Whenever the pilot is using oxygen, the card inside the blinker rotates. In this simulation, donning of oxygen masks is simulated when reaching 120000 ft.

7.1.6. <u>Turn & Bank Indicator</u>

A standard, electrically driven turn coordinator instrument.

7.1.7. <u>Accelerometer</u>

A conventional type accelerometer. It displays the load factor to which the aircraft is subjected. It also gives an indication of maximum positive and negative g-units reached by the aircraft during flight. The dial scale ranges from 0 to 12 positive g-units and from 0 to 4 negative g-units. A "PUSH TO SET" knob, on the lower left side of the instrument, allows zero-setting of the maximum positive and negative g-units displayed.

7.1.8. Airspeed Indicator

Combine Airspeed / Mach indicator. An airspeed bug can be adjusted through the knob on its lower right.

7.1.9. <u>ADF Indicator</u>

The IND 650 Indicator is a single pointer indicator. The following controls and indications are available:

- HEADING SELECTOR: it is a knob labelled HDG which is used to rotate the compass card to the aircraft magnetic heading.
- LUBBER LINE: It is the reference line for setting the desired headings.
- BEARING POINTER: It is served to the ADF receiver and indicated the relative bearing between the aircraft center line and the selected ground station.

7.1.10. Attitude Indicator

A self-contained, independent instrument which displays roll and pitch attitude. Pitch and roll attitude are displayed by the position of a spheroid relative to a fixed aircraft symbol. A knob, on the lower right of the instrument, marked PULL FOR QUICK ERECT, when pulled allows for quick gyroscope erection. The attitude indicator is supplied through a circuit breaker switch (7.1.15).

7.1.11. Course Indicator (HSI)

The Collins 331A-3G type course indicator (also referred as Horizontal Situation Indicator – HIS) provides a pictorial display of the navigation situation; in addition, it also provides controls for course and heading selection. The course indicator incorporates the following:

- Lubber line: indicates the magnetic heading of the aircraft
- HDG flag: comes into view to indicate a failure in the power supply or the compass section of the system or when the system is de-energized.
- NAV flag: appears when the VOR/ILS receiver is not receiving an appropriate signal. Deviation bar indications of the heading indicating arrow are invalid.
- Compass Card: the compass card can rotate and is served to the Flux Detector signals. It displays magnetic north, read against the lubber line.
- Miniature aircraft: represents the actual aircraft (stationary symbolic aircraft). It remains stationary, always pointing to the lubber line.
- COURSE KNOB: is used to select either the desired radial of a VOR station or the localizer course of an ILS station, as displayed by the Course Arrow, on the compass card.
- COURSE ARROW: is positioned by the Course Knob and is used to track the VOR radial or the inbound course of an ILS station on the Compass Card.
 - RECIPROCAL COURSE POINTER: is the rear end of the course arrow, pointing to the reciprocal of the selected course.
 - LATERALDEVIATION BAR: is a portion of the Selected Course Arrow. It indicates the selected VOR radial or ILS localizer course. Aircraft position in relation to a VOR radial or the localizer beam is represented by the relative position of the miniature aircraft and the lateral deviation bar. To maintain a radial, as selected by the Course Arrow, the lateral deviation bar should be kept aligned with the arrow.
 - LATERAL DEVIATION SCALE: each mark in the lateral deviation scale indicates a deviation of approximately 2 degrees from the selected VOR radial or ½ degree from the localizer course.
 - HDG KNOB: allows setting the selected heading marker on the outer rim of the compass card, against the heading to be flown.
 - SELECTED HEADING MARKER: is positioned by the HDG Knob, it provides the pilots with a reference to the selected heading to be held.
 - TO-FROM POINTER: indicates which end of the indicator arrow is turned to the selected VOR station.

7.1.12. Altimeter

It is a conventional barometric altimeter which uses aneroid capsule to convert static pressure information from the Pitot system to aircraft altitude. The pointers on the face of the instrument present aircraft altitude in feet. A long pointer indicates the hundreds of feet; the short dagger-shaped pointer indicates thousands of feet; finally, a wedge-shaped marker moving along the dial indicates the ten thousands of feet. To compensate for variations from standard atmosphere, to which the altimeter has been designed, a setting nob on the lower left corner sets the barometric pressure as received from the weather station. Barometric pressure setting, ion InHg, appears on a window on the right side of the dial.

7.1.13. Rate of Climb Indicator

It displays the vertical speed component of the aircraft in flight. The dial range is from 0 to 6000 feet per minute (f.p.m.) climb or descent vertical speed.

7.1.14. Fast Slave Switch

The slaving accessory combines flux detector and gyro information. The FAST SLAVE switch permits the pilot to fast slave the Slaving accessory if necessary.

7.1.15. <u>Attitude Indicator Switch</u>

A circuit breaker switch providing power to the Attitude Indicator (7.1.10).

7.1.16. Engine Fire Warning Lights

FIRE FIRE L R

The fire detection system consists of a sensing element around each engine, two FIRE lamps and a fire warning test Circuit. The test circuit is activated by either the Warning Lights Test button (7.1.3) or by pressing the FIRE lights.

7.1.17. Standby Compass

A conventional magnetic compass.

7.1.18. Warning Lamps

GEN	GEN	OIL	OIL	LOW	HI	P.NOR.	P.NOR.	P.EM.	P.EM.
L	R	L	R	Ρ.	Ρ.	L.	R.	L.	L.

The Centralized Warning system comprises the following lamps:

- GEN L: No.1, or Left Hand Generator, offline
- GEN R: No.1, or Right Hand Generator, offline
- OIL L: Left engine oil pressure (Refer to 7.1.42)
- OIL R: Right engine oil pressure (Refer to 7.1.42)
- LOW P: Pressure in the collector tank is below 0.1 bar.
- HI P: Pressurization in the fuel tanks exceeds 0.3 bar.
- P.NOR.L: Left Engine Main Control Box Failure/Inoperative
- P.NOR.R: Right Engine Main Control Box Failure/Inoperative
- P.EM.L: Left Engine Emergency Control Box Failure/Inoperative
- P.EM.L: Right Engine Emergency Control Box Failure/Inoperative

NOTE: In this prototype aircraft, the labels below the lights are to be followed. Text on the indicators themselves is to be disregarded.

7.1.19. Audio Marker Panel

The AMR-530 Audio Marker Panel is equipped with the following displays and controls: A Communication Master Selector, an Auto Switch (not simulated), seven Audio Control Switches, a Marker witch and three Marker Lights. The above controls and lights are located on the front panel and have the following functions:

- The COMMUNICATIONS MASTER SELECTOR is a two-position switch labelled COMM1, COMM 2. IN the COMM 1 or COMM 2 position, either the VHF COMM 1 or the VHF COMM 2 transceiver is selected for use by the pilots.
- The AUTO switch is not simulated, and always activated.

- The seven AUDIO CONTROL SWITCHES are labelled respectively COM 1, COM 2, NAV 1, NAV 2, ADF, DME, and MKR. They are two position toggle switches with the positions center-OFF, and down-PHONE. The PHONE position routes the corresponding audio signal to the pilot's headphones.
- The MARKER switch allows to select sensitivity between LOW and HIGH position. Setting the switch to the spring-loaded TEST position the three MARKER LIGHTS are lit at full intensity and the audio channel is tested (if the relevant MKR switch is set to PHONE). This position is used for a preflight test of the MARKER LIGTHTS operation.
- The Marker lights are labelled O, M, and I respectively. They provide the pilots with a visual indication of marker beacon passage.

7.1.20. COMM 1 Equipment

The VHF-251E communications transceiver is designed to provide maximum ease of operation; it is equipped with the following displays and controls located on its control panel: Frequency Selector, Mode Selector, Volume/Test Knob, Frequency Display and Transmit indicator.

- The FREQUENCY SELECTORS consist of two concentric knobs used to select communications frequencies. The inner knob selects kHz and the outer knob selects MHz frequencies. There are no end stops, therefore frequencies may be selected turning the knobs in either direction.
- The MODE SELECTOR knob is located, on the lower left side of the control panel and is labelled: STORE-SELECT-RECALL. It is used to control the single channel memory. When in SELECT position, a desired frequency may be may be selected by the FREQUENCY SELECTORS. Turning the knob momentarily to the STORE position, the selected frequency is stored in in the memory replacing the previously stored frequency. The knob is spring loaded. The RECALL position allows operation of the transceiver on the previously stored frequency. When the knob is in the SELECT position, any of the 720 channels within frequency range, can be selected for operation via the FRQUENCY SELECTOR.
- The VOLUME/TEST Knob is a rotary control concentric to the MODE SELCRTOR Knob. In The fully counter-clockwise position the transceiver is switched OFF. Rotating clockwise increases the radio volume.
- The FREQUENCY DISPLAY is a five-digit electronic indicator that displays the frequency to which the transceiver is tuned, regardless or the position of the MODE SELCTOR.
- The TRANSMIT INDICATOR is a lamp labelled XMIT which monitors the radio frequency output during transmission.
- 7.1.21. <u>COMM 2 equipment</u>

See 7.1.20.

7.1.22. NAV 1 equipment

The Collins VIR 351 has a capability of 200 channels on the VHF frequency range, from 108.00 thru 117.95 MHz in 50 kHz steps, 160 channels being VOR channels and the remaining 40 being LOC channels. The NAV 1 receiver is also capable of tuning the COLLING GLS 350 E glideslope receiver. Both the NAV 1 and NAV 2 are capable of tuning the OLLINS TCR 451

DME receiver. The front panel of each receiver is equipped with the following controls and indications:

- VOL/ID Knob: when rotated fully contraclockwise the receiver is swathed OFF. Rotating clockwise increases the radio volume.
- DISPLAY SELECTED CONTROL: it is a three-position rotary switch, labelled TO, FREQ and FROM. In the TO position the display shows the bearing to the station. In the FREQ position, the frequency of the selected ground station is presented on the display. In the FROM position the display shows the VOR bearing "from" the station, followed by the letter F.
- ELECTRONIC DISPLAY: it is a five-digit seven bar indicator which display either the selected frequency or the VOR bearing.

7.1.23. NAV 2 equipment

See 7.1.22.

7.1.24. Transponder equipment

The TDR 950L Transponder has the following controls and indicators:

- FUNCTION SELECTOR: Selects transponder modes OFF, STBY, ALT, ON.
- REPLY LAMP: this lamp flashes whenever a response is transmitted to a valid interrogation.
- CODE SELECTOR SWITCHES: they are four rotating knobs used to select the reply code. The selected code appears on four windows located each, above the corresponding knob.

7.1.25. ADF equipment

The RCR 650 A ADF receiver is fitted with the following controls and indications:

- VOL/ID CONTROL KNOB: when rotated fully contraclockwise the receiver is swathed OFF. Rotating clockwise increases the radio volume.
- FREQUENCY SELECTORS: they are three rotary knobs which allow to select the operating frequency. Selected frequency is displayed on four windows over the frequency selectors.

7.1.26. Landing Gear Indicator

The landing gear position indication is given by three green lamps and a red lamp. When the landing gear is selected down, if one legs is not down the corresponding green light is not lit and the red light remains lit.

Landing Gear Position Warning: when the aircraft is likely to be in a landing configuration and anyone of the three legs is not down, an audio signal is given to the pilots. When either engine throttle lever is set at minimum and the airbrakes are deployed, the audio signal is generated.

7.1.27. <u>Turn & Bank Switch</u>

A circuit breaker switch supplying power to the turn & bank indicator.

7.1.28. Anticollision Lights Switch

Anticollision lights consist of three high-intensity white lamps having the same location as the position lights, at both wing tip tanks nose sections and at the top of the vertical fin trailing edge.

7.1.29. Position Light Switch

- A red lamp on the nose of the left wing tank
- A green lamp on the nose of the right wing tank
- A white lamp on the top side of the vertical fin trailing edge

7.1.30. Landing Light Switch

The landing light is a white lamp located on the nose of the fuselage. Operation for more than 5 consecutive minutes is to be avoided.

7.1.31. Landing Gear Lever

Features 3 positions:

- UP: powers the gear motor to retract the landing gear
- OFF: disconnects power to the landing gear motor
- DOWN: powers the gear motor to extend the landing gear.

7.1.32. LH & RH Gen Switches

ON	ON
L GEN	R GEN

Generator Control Pushbuttons.

When electrical power is available to the main bus, the amber "L GEN" and "R GEN" labels are lighted.

When the respective generator is online, the green "GEN" label illuminates.

Pressing the button attempts to bring the respective generator online, or disconnects it if online.

The GEN ARM pushbutton needs to be pressed if a generator has been manually disconnected (by pressing the respective GEN button).

7.1.33. Battery Switch

Battery ON/OFF pushbutton.

When electrical power is available to the main bus, the amber "BATT" label is lighted. The "BATT" label will flash sporadically if the battery is disconnected, and no power is available in the main bus (provided enough voltage is present in the battery).

When the battery is online, the green "ON" label is illuminated.

7.1.34. Eng. Control Test Buttons

Engine emergency control box test toggle buttons

When electrical power is available to the main bus, the amber "L TEST" and "R TEST" labels are lighted.

When the respective engine is running (MAST on), this function can be activated. With Test ON, the normal control box of the respective engine is disconnected, and the respective "P

NOR" is illuminated. Acting on the respective emergency throttle knob shall now control the engine. Pressing the TEST switch button again will reactivate the normal engine control box.

7.1.35. Eng. Dry Crank Buttons

Engine Dry Crank Buttons

When electrical power is available to the main bus, the amber "L VENT" and "R VENT" labels are lighted.

When the respective engine is stopped (MAST off), pressing this momentary pushbutton will power the respective starter motor and close the fuel supply to the engine. Dry motoring shall be limited to 10 sec. per engine maximum.

7.1.36. Eng. Boost Pump Buttons

Engine Boost Pump Toggle buttons

When electrical power is available to the main bus, the amber "L BOOST" and "R BOOST" labels are lighted.

If electrical power is available, pressing these switches toggles ON/OFF the respective engine electric fuel boost pump.

7.1.37. Eng. Master Switches

Engine Master Switches

When electrical power is available to the main bus, the amber "L MAST" and "R MAST" labels are lighted.

When the respective engine MAST is OFF, pressing this button initiates the automated engine start sequence.

When the respective engine MAST is ON, pressing this button initiates the automated engine shutdown sequence.

When an engine shuts down for any reason, the respective MAST switch toggles to OFF.

7.1.38. Eng. Shut-Off Switches

OPEN	OPEN
SHUT	SHUT

Engine fuel shut-off toggle buttons.

The engine fuel shut-off switches are covered by a spring-loaded safety guard to prevent accidental operation. In this simulation, the guard is lifted by right-clicking.

When the respective fuel shut-off valve is closed, the "SHUT" label is illuminated. When the valve is open, the "SHUT" label is off and the "OPEN" label illuminates.

Normally, the valves are automatically controlled by the engine control box.
CAPRONI VIZZOLA C 22 J

7.1.39. Flaps Position Indicator

Flaps can extend from 0° to 18°. Any intermediate position can also be selected.

7.1.40. Longitudinal Trim Indicator

Trim actuator position indicator. In this simulation, clicking on the instruments shows/hides a warning card displaying instructions for longitudinal trim settings for take-off and approach.

7.1.41. DME Selector Switch

In the up position, labelled "1", the DME transmitter receiver is tuned to the NAV 1 equipment, in the down position, labelled "2", the DME is transmitter receiver is tuned to the NAV2 equipment.

7.1.42. Integrated Multi Display

The integrated multi display panel (IMDP) displays operating parameters of the engines and the electrical system:

- Fuel Quantity, labelled FUEL LEVEL
- Fuel supply pressure, labelled FUEL PRESS
- Engine lubricating oil temperature, labelled OIL TEMP
- Engine lubricating oil pressure, labelled OIL PRESS
- Engine exhaust gas temperature, labelled EGT
- An analogue display of engine speed, labelled N%
- Two digital displays of engine speed, labelled N%
- Outside air temperature, labelled OAT
- Voltage current output of the two electrical systems on a single digital display labelled V-A
- A selector knob labelled V-A controls the V-A display. The selector has 4 positions, from left to right:
 - 1. LH system Volts
 - 2. RH System Volts
 - 3. LH System Amperes
 - 4. RH system Amperes
- A light potentiometer regulates the backlighting of the IMDP.

7.1.43. <u>Altitude Alerter</u>

It is a panel mounted unit with a display and control switches, It allows the pilot to select a flying altitude and altitude range, and gives pilots flying commands reach the selected altitude. It also warns the pilot when the aircraft deviates from the selected altitude range. The front panel carries the following controls and indicators:

MODE SWITCHES: four pushbuttons labelled ALT, BARO, SEL and RNG respectively. Pressing ALT (Altitude Mode) aircraft altitude in 100 ft increments is displayed on the digital display. The BARO switch selects the Barometric pressure mode of operation and is used to enter the barometric setting. This simulation ties this instrument to the Altimeter BARO setting. When the BARO switch is pressed, the altimeter setting appears on the display. The barometric setting can be entered acting on the SET switch. The SEL switch is used to select flying altitude. Acting on the SET switch, the pilot selects a pre-determined altitude where he wants the alert to activate. The setting may be continually adjusted during flight. The RNG button selects the Range mode of operation. When first pressed, a range of ± 250 ft appears on the display. Range is adjustable from ± 50 to ± 750 ft. The range can be adjusted acting on the SET switch.

- SET SWITCH: it is labelled SET and can be moved vertically. The switch is springloaded to centre and acts like a lever, increasing or decreasing the selected value with a speed proportional to the switch deflection. The mouse wheel produces single increments/decrements. This switch is used to adjust the setting in the Barometric Pressure, Select and Range models of operation.
- POWER SWITCH: It is a rotary knob used to turn ON or OFF the equipment.
- DISPLAY UNIT: It is a six digit seven-bar indicator. The first Digit, to the left, is the visual alert and can display either a Descent Command Bar (N), a Climb Command Bar (U), or a Level Command Bar (-). The remaining five digits can either display the selected altitude, the altitude range, or the barometric setting depending on the mode of operation selected.

7.1.44. DME indicator

Che Collins IND 450 indicator consists of a power switch, a mode selector, and digital display.

- POWER SWITCH: a two position toggle labelled ON-OFF.
- MODE SLECTOR: It is a three position toggle switch labelled NM, KTS and MIN. In the NM position, distance from the station in nautical miles is displayed to a maximum of 199.9 nautical miles. The KTS position displays ground speed of the aircraft in knots with respect to the selected station up to a maximum of 399 knots, minimum detectable speed is 30 knots. The MIN position displays the remaining flight time to the station in minutes.

7.1.45. NAV 2 Indicator

The IND 350 indicator is a single pointer VOR/LOC indicator, equipped with a manual Omnibearing Selector (OBS), and a NAV flag. Rectilinear deviation bars provide presentation of deviation when intercepting courses. The indicator is also equipped with a 360-degree visibility of course selector card with reciprocal and 45-degree reference marks. The OBS knob allows the pilot to select the desired radial from the VOR station.

7.1.46. Oxygen Blinker, RH

Whenever the pilot is using oxygen, the card inside the blinker rotates. In this simulation, donning of oxygen masks is simulated when reaching 120000 ft.

7.1.47. <u>Clock</u>

The clock is equipped with a timer function, operated with the push-pull knob on the lower left of the instrument:

- PULL: Start Chronometer
- CENTRE: Stop Chronometer
- Push: Reset Chronometer (Spring Loaded position)

7.1.48. <u>Alternate Static Source</u>

The lever deviates the static source to the alternate port.

7.1.49. <u>Pedal Adjust Handle, RH</u> This function is not simulated.

CAPRONI VIZZOLA C 22 J

7.1.50. GEN Arm Button

The GEN ARM pushbutton needs to be pressed if a generator has been manually disconnected (by pressing the respective GEN button).

7.1.51. Internal Lights Switch

This knob controls the electrical power to the instrument backlighting and ceiling mounted floodlight.

7.1.52. Flaps Switch

Any intermediate flap position may be selected.

In this simulation, the switch is operated by clicking UP or DOWN. The mouse wheel may also be used. Standard Flight simulator Flap commands are also usable.

7.1.53. LH & RH Throttles

In this simulation, throttles can be dragged, or operated with the mouse wheel.

7.1.54. Emergency Throttles

When the Respective engine control box has failed, the emergency throttle may restore control of the engines to the pilots. In this simulation, it only responds when the TEST function is activated for the respective engine.

7.2. LOWER PANEL (BETWEEN SEATS)

- 1. Airbrakes Lever
- 2. Windshield Defrost Lever
- 3. Emergency Gear Extension Mechanism
- 4. Cabin Heating air Lever

7.2.1. Airbrakes Lever

1

2

- 3

- 4

One panel located above each wing, extending from the wing root until the end of the flaps, and hinging together with the flaps. When open, the leading edge of the panel is rotated upwards by a maximum of 48°. The flaps are also rotated downward by the same amount. The lever operates the airbrakes and flaps through a series of mechanical linkages. Flap deflection can still operate through its full range of 18° plus the commanded airbrake deflection.

7.2.2. Windshield Defrost Lever

External air from an intake on the belly of the aircraft is fed through a heat exchanger around the right engine. The hot air is routed to a nozzle located on the forward end of the dashboard to be ejected on the internal side of the front windshield. This system only operates with engines running and aircraft flying. In this simulation, windshield ice may form under rainy conditions if external temperature is low enough. Operating this control will reverse the icing process.

7.2.3. Emergency Gear Extension Mechanism

This panel can be removed by lifting the black knob on its forward end. It releases a gear release lever to be inserted in the red slot below this panel. In this simulation the complete

Figure 7-2

process is accomplished by a single click on this panel. The

Gear lever must be set to the DOWN position.

7.2.4. Cabin Heating Air Lever

External air from an intake on the belly of the aircraft is fed through a heat exchanger around the left engine. The hot air is routed to the nozzles located in front of the pilots. This system only operates with engines running and aircraft flying.

7.3. CHECKLIST

This simulation includes a checklist function, through the standard Flight Simulator Checklist functionality.

CAPRONI VIZZOLA C 22 J

7.4. GENERAL SYSTEM NOTES

This section details notes and warnings that apply to the systems of the aircraft as simulated. Care shall be taken to avoid unsafe operation.

7.4.1. Fuel system

The fuel system includes:

- Two Wing Tip Tanks (capacity: 72 litres each)
- Two Main Wing Tanks (capacity: 137 litres each)
- One Fuselage Collector Tank (capacity: ~ 1 litre)

Fuel is gravity fed to the collector tank, from the main wing tanks. The tip tanks are interconnected with the main wing tanks

- Engines feed ONLY from the collector tank

- Always refuel the main tanks first. If more fuel is needed, fuel the tip tanks.
- The collector tank is equipped with valves for inverted flight. Inverted flight is limited to 30s to avoid collector tank exhaustion and engine fuel starvation.

7.4.2. <u>Heating system</u>

Windshield frosting is simulated. Operate the Windshield Defrost lever as required.

7.4.3. Flight Controls

In this aircraft, airbrakes provide positive lift. They shall be deployed for landing.

- Airbrakes down and flaps up is not a normal approach configuration.

Elevator Trim requires setting before take-off:

- Set elevator trim 25% UP with 2 occupants
- Set elevator trim 12% UP with 1 occupant

7.4.4. Weight and Balance

Pilot and Co-pilot models will display in accordance to the weight and balance as entered in Flight Simulator:

Weight (lbs)	Model Displayed
0 to 80	Empty seat
80 to 137	Female
137 upwards	Male

Setting unrealistic values will result in inability to trim the aircraft, and possible pitch instability / elevator authority saturation.

7.4.5. <u>Conditions at Simulation start-up.</u>

When starting a flight from the gate/parking, the aircraft will be "Cold & Dark", fully shut down.

When starting inflight, the aircraft is set-up for safe continuation of flight.